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ABSTRACT: Data clustering is a common technique for statistical data analysis; it is defined as a class of 

statistical techniques for classifying a set of observations into completely different groups. Cluster analysis 

seeks to minimize group variance and maximize between group variance. In this study we formulate a 

mathematical programming model that chooses the most important variables in cluster analysis. A nonlinear 

binary model is suggested to select the most important variables in clustering a set of data. The idea of the 

suggested model depends on clustering data by minimizing the distance between observations within groups. 

Indicator variables are used to select the most important variables in the cluster analysis. 

 

I. Introduction 
Data clustering is a common technique for statistical data analysis; it is defined as a class of statistical 

techniques for classifying a set of observations into completely different groups [12], [13]. Cluster analysis 

seeks to minimize group variance and maximize between group variance. 

Nevertheless there is a great importance for mathematical programming in treating cluster analysis problem 

because it enables to formulate more than one objective for clustering, and hence takes in consideration 

different criteria for achieving the optimal clustering. Moreover mathematical programming does not impose 

assumptions concerning the distribution of the criterion variables. 

In this study we formulate a mathematical programming model that chooses the most important variables in 

cluster analysis. A nonlinear binary model is suggested to select the most important variables in clustering a set 

of data. The idea of the suggested model depends on clustering data by minimizing the distance between 

observations within groups. Indicator variables are used to select the most important variables in the cluster 

analysis. 

 

II. Review of some related clustering methods 
In this section we summarize one of the most commonly used clustering methods which is: the k-means 

method. 

 

k- means method [7], [10] 

The algorithm starts by choosing k seeds in some fashion (representing the k clusters) and the rest of the 

objects are processed sequentially. Each object is compared to all the seed points to see which is the closest and 

it is put in that cluster. Seed points are updated every time a new object is added to the cluster by assigning 

cluster mean as the updated seed point. 

The process is composed of these three steps:- 

 Partition the objects into k initial clusters. 

 Proceed through the list of objects; assigning an object to the cluster whose centroid (mean) is nearest. 

Recalculate the centroid for the cluster receiving the new object and for the cluster losing the object. 

 Repeat the previous step until no more reassignments take place. 

 

III. Selection of variables in cluster analysis 
Variable selection is defined as the problem of selecting input variables that are most predictive of a given 

outcome. 

Recently variable selection becomes more important for a lot of research in several areas of application, 

since datasets with tens or hundreds of variables are available and may be unequally useful; some may be just 

noise, thus not contributing to the process. 

There have been many trials for variable selection in cluster analysis ([5], [8], [9]). 

Brusco and Cradit, 2001 [3] presented a variable-selection heuristic for K-means clustering (VS-KM) 

based on the adjusted rand index, which is one of the most famous evaluation criteria that are used to compare 

the performance of clustering methods, which can be applied to large datasets. The heuristic was subjected to 
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Monte Carlo study designed to test VS-KM. The results indicate that the heuristic is extremely effective at 

eliminating masking variables. 

The method is illustrated as follows: Developing partitions for each individual variable by k-means 

algorithm. The next step is using the adjusted rand index to compute the degree of agreement between these 

partitions, and then comparing the results for each variable and the largest value will be chosen. The same 

process is repeated by using the chosen variable and the other variables, also we use the adjusted rand index to 

obtain the largest value. 

 

IV. The suggested model 
Let i = 1,2,…,n  be the set of observations that are to be clustered into m clusters (groups). 

For each observation i  N, we have a vector of observations yi= {yi1 ,yi2 ,……, yip}  R
p
 , where p is the 

number of variables. 

If the data is standardized using the formula   , Then we have the corresponding vector of 

observations zi= {zi1, zi2 ,……, zip}  R
p
.
 
 

Since we aim to construct m clusters, we start by defining n clusters fictitiously, n-m of which will be 

empty. 

Therefore we define nxn (0-1) variables xij such that  
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cluster     the  tobelongselement      theif      1 thth ji

xij  

        

Where cluster j is non empty if xjj =1          j=1,…,n. 

These variables need to satisfy the following conditions [11]:  

1- In order to insure that each element belongs only to one non empty cluster, then the following 

constraint is needed:  





n

j

ijx
1

1
                   i= 1,…,n.                                                                                                          (4.1) 

2- In order to insure that j
th

 cluster is non empty only if xjj =1, then this can be represented as follows: 

ijjj xx 
                    i= 1,…,n.                                                                                                                   (4.2) 

                                             j= 1,…,n. 

3- In order to insure that the number of non empty clusters is exactly m, then this can be written as: 





n

j
jj mx

1
                                                                                                                                        (4.3) 

 

       For example if x77=1, then cluster 7 is non empty and if it includes element number 1 and 3 in addition to 

element number 7, then we have (1,3,7) as cluster 7 and x17= x37=x77=1, while x71=x73=x13=x31=0 and also 

x11=x33=0. 

 

       Note that summing (4.2) with respect to i results in the following set of constraints  


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               j= 1,…,n                                                                                                                  (4.4) 

       This can be written as  
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ijjj xnx           j= 1,…,n                                                                                                                   (4.5) 
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       Thus it reduces the number of constraints from n
2
 to n as suggested in [1]. 

       To achieve the aim of the study we define a set of variables as follows:  

       We define p variables Vs such that: 











otherwise     0

          

  important   is  variable   theif      1 ths

vs  

For s= 1,……,p 

These variables need to satisfy the following condition: 

In order to insure that the selected number of important variables is exactly r, then: 

                                                                                                                                                                (4.6) 

 

       

 

To obtain the most important variables, the suggested version to achieve this aim is the minimization of the 

total sum of square deviations within groups by minimizing the weighted total sum of squares of distance 

between all observations within each cluster. The suggested weights are the indicator variables Vs. 

       This objective may be written as  

 

                                                                                                                                                                            (4.7) 

 

 

where zis is the standardized i
th

 observations of the s
th

 variable. 

       Since the model aims to select the important variables in cluster analysis (4.7) with respect to the structural 

constraints (4.1, 4.3, 4.5 and 4.6), the above analysis suggests the objective function F to take the formula given 

in (4.8). 

 

The mathematical programming model 

From the above discussion, the mathematical programming model for the selection of variables in cluster 

problem takes the form: 

Find the values of sV
ij

x ,  i,j=1,2,…,n and s=1,2,…,p 

which minimize:  
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 each                 is either 0 or 1  

       

The previous model contains a very large number of variables and constraints. It cannot be solved directly 

by using the available mathematical programming software. An online site for solving mathematical 

programming models is used to treat this problem [4].  

 

The solution steps       
The mathematical programming model presented above is a binary non linear mathematical programming 

model. The following steps are suggested as a technique to solve this problem: 

 

Step 1 

Specify the number of observations (n) and number of variables (p), then enter the standardized values of 

each variable. 

 

Step 2 

We used the GAMS software [2] with interaction with the (Neos Server for Optimization) for solving the 

binary non linear programming problems [4] with too many variables, constraints or both to solve the final 

model. 

 

Step 3 

Obtain the values of decision variables            and hence state the most important variables and the 

clustering results. 

 

V. Numerical Example 
Ecoli Data Set 

According to [6], Nakai considered a set of 220 observations to detect protein Ecoli bacteria using two 

rule-based expert system, Expert System as 1st cluster and A Knowledge Base as 2nd cluster on five variables 

(y1, y2, y3, y4, y5) as a different method for analysis of the amino acid content of outer membrane and 

periplasmic proteins. The data set includes 143 in 1st cluster and 77 in the 2nd cluster. In this study, a random 

sample of 30 observations is chosen [Appendix ], 20 observations in 1st cluster and 10 in the 2nd cluster. Since 

the mentioned four variables have different units of scale, the data is standardized using the famous formula 

i
Z =

y
s

yy
i


   where , sy are the sample mean and standard deviation values respectively. The resulting 

standardized variables are z.y1, z.y2, z.y3, z.y4 and z.y5. According to the actual clustering, the first cluster 

contains observations from 1 to 20 while the second includes observations from 21 to 30. The aim of the model 

is to choose the most important three variables in clustering this set of data. The suggested approach is applied 

as well as one of the classical methods (VS-KM) [3] on the above data set. The adjusted rand index [14] is used 

to compare each clustering method with the actual clustering. 

 

Solution Steps 

1. Set n=30, p=5: the observed values zi1, zi2, zi3, zi4 and zi5, i= 1,2,…,n. 

2. Substituting the previous values in the model, we have the problem: 

Find the values of                     i,j=1,2,…,30 and s=1, …,5. 

which minimize: 

                                                                                                                                                                                                        (5.1)     
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                                                                                                                                                              (5.3) 
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 each                 is either 0 or 1  

 

3. We used the GAMS software [2] with interaction with the (Neos Server for Optimization) for solving the 

non linear programming problems [4], with too many variables, constraints or both. 

 

4. The following results are obtained: 

All the variables are zero except: 

v3=1             v4=1             v5=1 

x1,16=1          x2,16=1         x3,16=1            x4,16=1          x5,16=1 

x6,16=1          x7,16=1         x8,16=1            x9,16=1          x10,16=1 

x11,16=1        x12,16=1        x13,16=1           x14,16=1        x15,16=1 

x16,16=1        x17,16=1        x18,16=1           x19,16=1        x20,16=1 

x21,24=1        x22,24=1        x23,24=1           x24,24=1        x25,24=1 

x26,24=1        x27,24=1        x28,24=1           x29,24=1        x30,24=1 

 

Hence, the three selected variables are v3, v4 and v5, and the two obtained clusters are (1 to 20) and (21 to 

30).        

These clustering results, together with the results obtained by applying VS-KM method are summarized in 

the following table (5). 

 

Table (5) 

The clustering results of BNLP and VS-KM for the data set of example 

 BNLP VS-KM 

Variables y3, y4, y5 y3, y4, y5 

Cluster 1 
(1,2,3,4,5,6,7,8,9,10,11, 

12,13,14,15,16,17,18, 19,20) 

(1,2,3,4,5,6,7,8,9,10,11, 

12,13,14,15,16,17,18,19,20,21) 

Cluster 2 (21,22,23,24,25,26,27,28,29,30) (22,23,24,25,26,27,28, 29,30) 

The center of 

cluster 1 

y3 0.452 0.451 

y4 0.315 0.322 

y5 0.394 0.400 

The variance of 

cluster 1 

y3 0.006 0.005 

y4 0.009 0.009 

y5 0.014 0.014 

The center of 

cluster 2 

y3 0.572 0.588 

y4 0.751 0.782 

y5 0.779 0.806 

The variance of 

cluster 2 

y3 0.008 0.006 

y4 0.014 0.005 

y5 0.010 0.003 

% Correct classification 100% 97% 

Adjusted Rand index 1 0.865 
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From these results, it is clear that the VS-KM method and the suggested approach (BNLP) give 

approximately the same selected variables.  The VS-KM method succeeds in classifying about 97% with a 

value of the adjusted rand index equal to 0.865. The corresponding values for the suggested approach (BNLP) 

are 100% and 1 respectively and seem to act as better. The advantage of the suggested model is that it takes into 

consideration all different combinations of variables when choosing the most important variables, this does not 

happen in the VS-KM method. 

 

VI. Simulation study 
The purpose of the simulation study is to assess the performance of the suggested model, and also to 

compare the proposed model with classical VS-KM method. 

In the current simulation study, the following is considered: 

1- Sample size is 30 observations. 

2- The number of clusters is 3. 

3- The number of selected variables is 2 from 3 variables, 3 from 4 and 5 variables and 6 from 10 variables. 

Since the model contains a very large number of decision variables (n
2 

+ p) and also the same for number 

of constants (2n+2). It is very difficult to consider the case of large samples in the stimulation study according 

to the capacity of the available software. So, the study is limited to the case of small sample size (n is taken to 

be 30) and the number of clusters is limited to (3). The basic factor in the selection model is the number of 

variables. We consider the cases of p (number of variables) as 3, 4 ,5 and 10.    

 

The overall simulation design could be summarized in the following table: 

Combination 

number 

Sample 

size 

Number of 

clusters 

Number of 

variables 

Number of selected 

variables 

1 30 3 3 2 

2 30 3 4 3 

3 30 3 5 3 

4 30 3 10 6 

      

For each combination 50 runs are generated. The simulation's results are based on two indices to compare 

between the suggested model and VSKM method, as follows: 

 The correct classification percent  

 The adjusted rand index. 

These simulated runs have been done through building routines using four packages: Gams, SPSS, 

MATLAB and Microsoft Excel. 

 MATLAB is used to generate simulated data. 

 SPSS is used to solve the VSKM method. 

 Gams is used to solve the suggested model. It can not be solved directly by using the available 

mathematical programming software. An online site for solving mathematical programming models is used 

to treat this problem [4]. 

 Microsoft excel is used to exchange data and out puts files among the pervious software packages result. 

The results of BNLP model together with the results obtained by applying        VS-KM method are 

summarized in following table:  
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Table (6) 

The Correct classification and Adjusted Rand index results of BNLP and VS-KM for the simulation 

data set 

Number of 

variables 

BNLP VSKM 

Number 

of Runs 

% Correct 

classification 

Adjusted 

Rand index 

Number 

of Runs 

% Correct 

classification 

Adjusted 

Rand index 

3 

39 100 1 38 100 1 

5 96.67 0.898 5 96.67 0.898 

4 93.33 0.792 3 93.33 0.792 

2 90.00 0.705 4 90.00 0.705 

4 

41 100 1 40 100 1 

6 96.67 0.898 7 96.67 0.898 

3 93.33 0.792 1 93.33 0.792 

   2 90.00 0.705 

5 

40 100 1 40 100 1 

3 96.67 0.898 4 96.67 0.898 

5 93.33 0.792 2 93.33 0.792 

2 90.00 0.705 4 90.00 0.705 

10 

44 100 1 42 100 1 

5 96.67 0.898 6 96.67 0.898 

1 93.33 0.792 1 93.33 0.792 

   1 90.00 0.705 

        

Table (6) summarizes the total result of the simulation date set when using BNLP model in compared with 

the VSKM method. The BNLP model gives result as 39 of the runs succeed in classifying  100% with a value 

of the adjust rand index equal to 1 and 11 runs succeed in classifying  about 94.24% with a value of the adjust 

rand index equal to 0.824. While the VSKM method gives result as 38 of the runs succeed in classifying  100% 

with a value of the adjust rand index1 and 12 runs succeed in classifying  about 93.61% with a value of the 

adjust rand index equal to 0.807 when the number of variables is 3. The other cases 4, 5 and 10 variables are 

similar as the previous. In most cases, the suggested model acts better than VS-KM.  

 

VII. Conclusion 
This paper presents a mathematical programming model that chooses the most important variables in 

cluster analysis. A nonlinear binary model is suggested to select the most important variables in clustering a set 

of data. The suggested model seems to be at least equal in performance compared to classical methods. 

The suggested approach was compared to one of the classical methods (VS-KM). The comparison was 

based on published data sets and simulation study. The results show that the suggested approach is promising 

and at least equivalent to the traditional methods. The advantage of the suggested model is that it takes into 

consideration all different combinations of variables when choosing the most important variables, this does not 

happen in the VS-KM method. 
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Appendix 
Ecoli Data Set 

Ob

s. 

Variables Standardized Variables 

Y1 Y2 Y3 Y4 Y5 Zy1 Zy2 Zy3 Zy4 Zy5 

1 0.490 0.290 0.560 0.240 0.350 0.671 -1.803 0.696 -0.952 -0.798 

2 0.200 0.440 0.460 0.510 0.570 -1.357 0.033 -0.328 0.215 0.223 

3 0.420 0.400 0.560 0.180 0.300 0.182 -0.457 0.696 -1.211 -1.029 

4 0.250 0.480 0.440 0.170 0.290 -1.007 0.522 -0.532 -1.254 -1.076 

5 0.410 0.570 0.390 0.210 0.320 0.112 1.624 -1.044 -1.082 -0.937 

6 0.400 0.450 0.380 0.220 0.000 0.042 0.155 -1.147 -1.038 -2.421 

7 0.430 0.370 0.530 0.350 0.440 0.252 -0.824 0.389 -0.477 -0.380 

8 0.340 0.330 0.380 0.350 0.440 -0.378 -1.314 -1.147 -0.477 -0.380 

9 0.400 0.290 0.420 0.350 0.440 0.042 -1.803 -0.737 -0.477 -0.380 

10 0.400 0.500 0.450 0.390 0.470 0.042 0.767 -0.430 -0.304 -0.241 

11 0.420 0.380 0.540 0.340 0.430 0.182 -0.702 0.491 -0.520 -0.427 

12 0.350 0.480 0.560 0.400 0.480 -0.308 0.522 0.696 -0.261 -0.195 

13 0.440 0.510 0.470 0.260 0.360 0.322 0.889 -0.225 -0.866 -0.751 

14 0.440 0.280 0.430 0.270 0.370 0.322 -1.926 -0.635 -0.822 -0.705 

15 0.350 0.370 0.300 0.340 0.430 -0.308 -0.824 -1.966 -0.520 -0.427 

16 0.340 0.420 0.410 0.340 0.430 -0.378 -0.212 -0.840 -0.520 -0.427 

17 0.340 0.510 0.440 0.370 0.460 -0.378 0.889 -0.532 -0.390 -0.288 

18 0.000 0.380 0.420 0.480 0.550 -2.755 -0.702 -0.737 0.085 0.130 

19 0.260 0.400 0.360 0.260 0.370 -0.937 -0.457 -1.351 -0.866 -0.705 

20 0.160 0.430 0.540 0.270 0.370 -1.637 -0.090 0.491 -0.822 -0.705 

21 0.440 0.520 0.430 0.470 0.540 0.322 1.012 -0.635 0.042 0.083 

22 0.630 0.470 0.510 0.820 0.840 1.650 0.400 0.184 1.554 1.475 

23 0.400 0.500 0.650 0.820 0.840 0.042 0.767 1.618 1.554 1.475 

24 0.480 0.450 0.600 0.780 0.800 0.601 0.155 1.106 1.381 1.289 

25 0.310 0.500 0.570 0.840 0.850 -0.587 0.767 0.799 1.640 1.521 

26 0.330 0.450 0.450 0.880 0.890 -0.448 0.155 -0.430 1.813 1.706 

27 0.450 0.400 0.610 0.740 0.770 0.392 -0.457 1.208 1.208 1.150 

28 0.710 0.400 0.710 0.700 0.740 2.210 -0.457 2.232 1.035 1.011 

29 0.600 0.610 0.540 0.670 0.710 1.441 2.113 0.491 0.906 0.872 

30 0.630 0.540 0.650 0.790 0.810 1.650 1.257 1.618 1.424 1.335 

M 0.394 0.437 0.492 0.460 0.522 0 0 0 0 0 

S.d 0.141 0.080 0.096 0.228 0.212 1.000 1.000 1.000 1.000 1.000 

 

 Source. The first fife columns represent a sample of 30 units drawn at random from [6]. The last four 

columns are calculated by the researchers. 
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